10 research outputs found

    Rock-burst occurrence prediction based on optimized naïve bayes models

    Get PDF
    Rock-burst is a common failure in hard rock related projects in civil and mining construction and therefore, proper classification and prediction of this phenomenon is of interest. This research presents the development of optimized naïve Bayes models, in predicting rock-burst failures in underground projects. The naïve Bayes models were optimized using four weight optimization techniques including forward, backward, particle swarm optimization, and evolutionary. An evolutionary random forest model was developed to identify the most significant input parameters. The maximum tangential stress, elastic energy index, and uniaxial tensile stress were then selected by the feature selection technique (i.e., evolutionary random forest) to develop the optimized naïve Bayes models. The performance of the models was assessed using various criteria as well as a simple ranking system. The results of this research showed that particle swarm optimization was the most effective technique in improving the accuracy of the naïve Bayes model for rock-burst prediction (cumulative ranking = 21), while the backward technique was the worst weight optimization technique (cumulative ranking = 11). All the optimized naïve Bayes models identified the maximum tangential stress as the most significant parameter in predicting rock-burst failures. The results of this research demonstrate that particle swarm optimization technique may improve the accuracy of naïve Bayes algorithms in predicting rock-burst occurrence. © 2013 IEEE

    A novel heuristic algorithm for the modeling and risk assessment of the covid-19 pandemic phenomenon

    Get PDF
    The modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the quality of the health system in each area, the age distribution of population, geographical and environmental factors as well as other conditions. Based on derived predicted epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution. This research highlights the potential of the proposed model as a tool which can assist in the risk assessment of the COVID-19. Mapping its development through 3D-epidemic surface can assist in revealing its dynamic nature as well as differences and similarities among different districts

    Soft computing techniques for the prediction of concrete compressive strength using Non-Destructive tests

    No full text
    This study presents a comparative assessment of conventional soft computing techniques in estimating the compressive strength (CS) of concrete utilizing two non-destructive tests, namely ultrasonic pulse velocity and rebound hammer test. In specific, six conventional soft computing models namely back-propagation neural network (BPNN), relevance vector machine, minimax probability machine regression, genetic programming, Gaussian process regression, and multivariate adaptive regression spline, were used. To construct and validate these models, a total of 629 datasets were collected from the literature. Experimental results show that the BPNN attained the most accurate prediction of concrete CS based on both ultrasonic pulse velocity and rebound number values. The results of the employed MARS and BPNN models are significantly better than those obtained in earlier studies. Thus, these two models are very potential to assist engineers in the design phase of civil engineering projects to estimate the concrete CS with a greater accuracy level.- (undefined

    Deep Neural Networks for the Estimation of Masonry Structures Failures under Rockfalls

    Get PDF
    Although the principal aim of the rockfall management is to prevent rock boulders from reaching the buildings instead of the buildings resisting the boulder impacts, there usually exists a residual risk that has to be assessed, even when structural protection measurements are taken. The evaluation of the expected damage of buildings due to rockfalls using empirical data from past events is not always possible, as transferring and applying damage observations from one area to another can be unrealistic. In order to simulate potential rockfall scenarios and their damage on buildings, numerical methods can be an alternative. However due to their increased requirements in expertise and computational costs, their integration into the risk analysis is limited, and simpler tools to assess the rockfall vulnerability of buildings are needed. This paper focuses on the application of artificial intelligence AI methods for providing the expected damage of masonry walls which are subjected to rockfall impacts. First, a damage database with 672 datasets was created numerically using the particle finite element method and the finite element method. The input variables are the rock volume (VR), the rock velocity (RV), the masonry wall (t) and the masonry tensile strength fm. The output variable is a damage index (DI) equal to the percentage of the damaged wall area. Different AI algorithms were investigated and the ANN LM 4-21-1 model was selected to optimally assess the expected wall damage. The optimum model is provided here (a) as an analytical equation and (b) in the form of contour graphs, mapping the DI value. Known the VR and the RV, the DI can be directly used as an input for the vulnerability of masonry walls into the quantitative rockfall risk assessment equation

    Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects

    Get PDF
    A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of their response to seismic stresses are exceedingly difficult because of the complexity of the structural system and the anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the parameters involved in the problem such as the masonry material mechanical characteristics and earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a detailed analytical methodological approach for assessing the seismic vulnerability of masonry historical and monumental structures is presented, taking into account the probabilistic nature of the input parameters by means of analytically determining fragility curves. The emerged methodology is presented in detail through application on theoretical and built cultural heritage real masonry structures.info:eu-repo/semantics/publishedVersio

    Soft computing-based models for the prediction of masonry compressive strength

    No full text
    Masonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also for quality control of materials and execution. Given the large variations of geometry of units and joint thickness, materials and building practices, it is not feasible to test all possible combinations. Many researchers tried to provide relations to estimate the compressive strength of masonry from the constituents, which remains a challenge. Similarly, modern design codes provide lower bound solutions, which have been demonstrated to be weakly correlated to observed test results in many cases. The present paper adopts soft-computing techniques to address this problem and a dataset with 401 specimens is considered. The obtained results allow to identify the most relevant parameters affecting masonry compressive strength, areas in which more experimental research is needed and expressions providing better estimates when compared to formulas existing in codes or literature.publishe

    Novel Fuzzy-Based Optimization Approaches for the Prediction of Ultimate Axial Load of Circular Concrete-Filled Steel Tubes

    No full text
    An accurate estimation of the axial compression capacity of the concrete-filled steel tubular (CFST) column is crucial for ensuring the safety of structures containing them and preventing related failures. In this article, two novel hybrid fuzzy systems (FS) were used to create a new framework for estimating the axial compression capacity of circular CCFST columns. In the hybrid models, differential evolution (DE) and firefly algorithm (FFA) techniques are employed in order to obtain the optimal membership functions of the base FS model. To train the models with the new hybrid techniques, i.e., FS-DE and FS-FFA, a substantial library of 410 experimental tests was compiled from openly available literature sources. The new model’s robustness and accuracy was assessed using a variety of statistical criteria both for model development and for model validation. The novel FS-FFA and FS-DE models were able to improve the prediction capacity of the base model by 9.68% and 6.58%, respectively. Furthermore, the proposed models exhibited considerably improved performance compared to existing design code methodologies. These models can be utilized for solving similar problems in structural engineering and concrete technology with an enhanced level of accuracy

    Soft computing-based models for the prediction of masonry compressive strength

    No full text
    Masonry is a building material that has been used in the last 10.000 years and remains competitive today for the building industry. The compressive strength of masonry is used in modern design not only for gravitational and lateral loading, but also for quality control of materials and execution. Given the large variations of geometry of units and joint thickness, materials and building practices, it is not feasible to test all possible combinations. Many researchers tried to provide relations to estimate the compressive strength of masonry from the constit-uents, which remains a challenge. Similarly, modern design codes provide lower bound solutions, which have been demonstrated to be weakly correlated to observed test results in many cases. The present paper adopts soft-computing techniques to address this problem and a dataset with 401 specimens is considered. The obtained results allow to identify the most relevant parameters affecting masonry compressive strength, areas in which more experimental research is needed and expressions providing better estimates when compared to formulas existing in codes or literature.MU - Malayer University(undefined

    A novel heuristic algorithm for the modeling and risk assessment of the COVID-19 pandemic phenomenon

    No full text
    This article belongs to the special issue: Soft computing techniques in materials science and engineeringSummarization: The modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the quality of the health system in each area, the age distribution of population, geographical and environmental factors as well as other conditions. Based on derived predicted epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution. This research highlights the potential of the proposed model as a tool which can assist in the risk assessment of the COVID-19. Mapping its development through 3D-epidemic surface can assist in revealing its dynamic nature as well as differences and similarities among different districts.Παρουσιάστηκε στο: Computer Modeling in Engineering & Science

    Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

    No full text
    There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype
    corecore